PMT

GCE Biology BY4

Mark Scheme – January 2013

Que 1	stion (a)	(i)	Marking details Photoperiod(ism)	Marks Available 1
		(ii)	Phytochrome NOT PR/ PFR	1
		(iii)	Leaves	1
	(b)	(i)	Ammonium/ NH_4^+ + nitrate (ions)/ NO_3^- [both needed for 1 mark] NOT ammonia	1
		(ii)	Denitrification	1
		(iii)	<u>Azoto</u> bacter	1
			Question 1 total	6

Question			Marking details		Marks Available
2	(a)		Gram positive:	purple/ violet NOT crystal violet	
			Gram negative:	red / pink	1
			[both needed for 1 ma	ark];	
	(b)		<u>Gram +ve</u> :		
			(thick) {murein / pepti	doglycan} cell wall (only)/ no	3
			lipopolysaccharide la	yer;	
				bs} crystal violet stain / purple colour;	max 2 if only
			<u>Gram –ve</u> :		discuss one
			{lipoprotein / lipopoly	saccharide}{ layer / wall} (external to murein	type of
			cell wall);		bacteria
			Does not retain {cryst	al violet stain / purple colour};	
			Stains {red/pink} with	{counter stain / safranin / carbol fuchsin};	
	(c)	(i)	Ignore references to	Gram +ve / Gram –ve.	
			A bacillus/ bacil	li; NOT rod	1
			B spirillum/ spiri	lli; NOT spiral	1
			C coccus/ cocci	; NOT round / staphylococcus	1
		(ii)	(lipoprotein / lipopolys	saccharide layer)	
			protects against (som	e) {antibiotics) / penicillin / antibodies} /	1
			makes them less sus	ceptible to attack by lysozyme/	-
			(lipid component) act	s as an (endo)toxin;	

Question		Marking deta	ails	Marks Available
<i>(d)</i> (i	(i)	Plate U	- enough colonies for reliable results/	Available
			- colonies easily countable;	
			NOT the right number/ we can see them	
		Plate R/S	- cannot distinguish individual colonies;	max 2
		Plate T	- too many colonies to count reliably;	
		Plate V	- not enough colonies for reliable estimate	
(i	ii)	69 colonies x	10 000 (dilution factor) x 2 (or 1/0.5);	2
		1 380 000/ 1.3	38 x 10 ⁶ colonies per cm ³ ;	
(ii	iii)	cannot be sur	de {dead / non-viable bacteria}/ e that {each colony has grown from a single lonies are not clumped}/ ORA;	1
(iv	∨)	likely to grow a want bacteria quickly as pos	at pathogenic bacteria / pathogenic bacteria more at temperature close to body temperature/ a to grow quickly to identify to treat infection as ssible; grow them as quickly as possible without	1
		Question 2 to	otal	[14]

Question		Marking o	Marks Available		
3	(a)	(i)	Sustained	n number / density/ size} of a population; l/ maintained (indefinitely) by a particular ent/ OWTTE;	2
		(ii)	24 to 26;		1
		(iii)	<u>L</u>	Density Dependent nutrient / food / yeast levels; oxygen level / concentration; disease/ infection/ contamination; toxins / waste products; accept pH NOT mates	max 2
			<u>II.</u>	Density Independent temperature; size of container; accept pH if not awarded in I	max 1
	(b)	(i)	•	on for (same) food source/ niche; reject nutrients {more successful than/ outcompetes} <i>P.caudatum;</i>	2
		(ii)	freely whil feeds (on (on yeast	ferent locations in same habitat/ <i>P. caudatum</i> swims le <i>P. bursaria</i> lives at bottom of ponds/ <i>P. caudatum</i> yeast suspended) in water while <i>P. bursaria</i> feeds that have settled) at the bottom; specific competition;	2
			Question	3 Total	[10]

Question

Marking details

Marks Available

8

4 (a)

Chloroplasts	Mitochondria
D;	H;
A;	F;
B;	J;
E;	G;

(b) (i) Reference to a suitable function of ATP e.g. protein synthesis/ max 3 active transport/ muscle contraction etc NOT movement
 Different types of energy can be transferred into a common form;

Only 1 molecule needed to transfer energy to chemical reactions;

Energy can be supplied in {small amounts/ packages/ approx

30.6kJ} /less {energy/ heat} wasted;

Easily transported (across membranes);

{Single enzyme/ only ATPase} needed to release energy from

ATP;

{Single bond needed to be broken/ one step reaction} to release energy;

(ii)	used by all organisms/ species; NOT cells	2
	To provide {energy/ fuel} for (nearly all biochemical) reactions;	
	NOT provide energy unqualified	

Question 4 Total [13]

Question			Marking details		
5	(a)	(i)	 A + 40mV C - 70mV [both needed for 1 mark] (accept suitable alternatives eg., -60 / + 30) 	1	
		(ii)	depolarisation Sodium / Na ⁺ (ion) channels open; Na ⁺ {flood / diffuse rapidly} into axon; (pd) inside axon becomes {positive/ +40};	max 2	
			<pre>repolarisation Na⁺ (ion) channels close and <u>K⁺(ion)</u> channels open; K⁺ {flood / diffuse rapidly} out of axon ; Must infer <u>sudden</u> movement out (pd) inside axon becomes {negative/ returns to-70};</pre>	max 2	
		(iii)	<u>threshold</u> potential not reached / all sub- <u>threshold</u> stimuli; stimulus / depolarisation not enough to open Na ⁺ (ion) channels; ref. to action potential being 'All or Nothing';	max 2	
	(b)	(i)	{2 or more/ a number of/ several} <u>polypeptide</u> chains; NOT group {bonded/ joined} together; NOT held Reject if used 'wrong' bond – i.e. hydrogen (alone)/ glycosidic/ ester/ peptide to form functional protein/ OWTTE;	max 2	
		(ii)		1	

(iii) middle of cell membrane is composed of {lipid / fatty acid side chains / tails}/ non polar; 1

Question		Marking details	Marks Available	
(c)	(i)	Myelin;		
		Accept phosphopilid	1	
	(ii)	Schwann cell;	1	
	(iii) Accept annotation on diagram		max 4	
		myelin inhibits{loss of charge/ movement of ions} (from		
		axon) / insulates (axon)/ prevemts depolarisation;		
		{gaps/ spaces} (between Schwann cells) called nodes of		
		Ranvier;		
		no myelin present in {nodes/ gaps/ spaces};		
		depolarisation only possible at Nodes of Ranvier / action		
		potential can only form {at the nodes/ where there is no		
		myelin}/ channels can only {open/close} in the nodes;		
		action potential jumps from one node to the next / saltatory		
		conduction/ lengthens local circuits/ OWTTE;		
		nerve impulse transmission faster;		

Question 5 Total

[17]

Question 6 <i>(a)</i> (i)		(i)	Marking details Glycolysis	Marks Available 3		
C		(•)	Link reaction Krebs Cycle [1 mark each row]	cytoplasm; matrix (of mitochondria); matrix (of mitochondria);		Ū
		(ii)	Glycolysis;			1
	(b)	(i)	Carbon dioxide/ CO ₂ ;			1
		(ii)	Decarboxylase;			1
	(c)		Substrate- level phos Glycerol can be cor enters respiration at t ATP is used in phosp	nverted to a 3C sugar which his point	2; and 6; 3; 1;	4
			Question 6 Total			[10]

Que	estion		Marking details	Marks Available
7 <i>(</i> a)			Describe how the light-independent stage of photosynthesis	
			(Calvin cycle) leads to the production of triose phosphate. [7]	
			Indicate the origin of the raw materials required for this stage of	
			photosynthesis and the possible uses of the triose phosphate	
		А	produced. [3] In stroma (of chloroplast);	
		Λ		
		В	5 carbon compound;	
		С	ribulose bisphosphate / RuBP;	
		D	carbon dioxide <u>fixed/ fixation;</u>	
		Е	By enzyme RuBisco;	
		F	To form hexose bisphosphate / 6C compound;	
		G	(breaks down into 2 × 3C) glycerate 3 phosphate/PGA/GP;	
		н	(converted into 2 × 3C) triose phosphate/TP/GALP;	
		I	NADPH H ⁺ /reduced NADP / NADPH ₂ ;	
		J	supplies hydrogen/used for reduction;	
		K	ATP broken down into ADP and Pi supplies energy.	[Max 7]
			(not ATP supplies energy).	
		L	ATP + NADPH ₂ from light dependent stage,	
		М	CO ₂ from {environment/respiration}	
		Ν	RuBP regenerated from TP.	
		0	Phosphate from ATP needed for this.	
		Б	TD starting point for sumthanis of	
		Ρ	TP starting point for synthesis of: glucose, lipids, amino acids, chlorophyll, cellulose, starch etc.	
			Any 2 products.	[max 3]
			, ,	[]
			Question 7(a) Total	[10]

Question 7(a) Total

PMT

PMT

Que 7	estion (b)		Marking details Give an account of how the kidney is involved in osmoregulation in mammals. [10]	Marks Available
		А	Antidiuretic hormone; NOT abbreviated	
		В	(ADH) Is {secreted/ released} by the (posterior lobe of the) pituitary;	
		С	(ADH) is carried in the bloodstream to the (distal convoluted tubule and) <u>collecting duct;</u>	
		D	When the blood is more concentrated / low Ψ more negative/ low blood volume;	
		Е	Detected by (osmo) receptors in hypothalamus;	
		F	(more) ADH released;	
		G	ADH levels increases the permeability of the (cells lining the) DCT/CD to water /explanation of water channels opening / aquaporins inserted into DCT membrane.;	
		н	Water moves out of the DCT/CD by osmosis;	
		Ι	Into the {interstitial / tissue} fluid where it is rapidly removed by the capillary network/ vasa recta;	
		J	This occurs because the {medulla of the kidney/ tissue fluid} has a high {solute/ salt/ ion} concentration/low Ψ ;	
		К	Due to the countercurrent multiplier system operating in the Loop of Henle/ correct reference of how counter current produced;	
		L	This (conserves water and) produces {small volumes/ concentrated urine};	
		М	Most water absorbed in the PCT;	
		Ν	Length of loop of Henle effects the volume of urine produced	
		0	Short loop of Hemle results in less water reabsorbed/ ORA	
		Ρ	Correct ref to adaptation to their environment	
			Question 7b Total	[max 10] [10]